Reflections on Doing and
Teaching Mathematics

Alan H. Schoenfeld
The University of California, Berkeley

This two-part chapter is concerned with issues of mathematical philosophy an
pedagogy. Part I deals with issues of ontology and/or epistemology—or in mor
down-to-earth language, what it means to do mathematics. Part II, which i
grounded in epistemological issues but focuses on issues of instruction, provide
descriptions of selected aspects of my problem-solving courses. Those course
are designed to engage students in the practices of doing mathematics and, as
result, to have them develop a sense of discipline (i.e., a mathematical perspec
tive) consistent with that held by mathematicians.

In a formal sense, Part I is neither necessary nor sufficient for Part II. On
may do mathematics one way and teach it another, of course. Conversely, philos
ophy can inform pedagogy but not determine it. Yet for most people there is a:
extremely strong relationship between Parts I and II. Whether or not one i
explicit about it, %one ’s epistemological stance serves to shape the c]assroon

xenv1r0nments one ‘creates (Hoffman, 1989). dn turn, our classrooms are thl

¥primary source of mathematncal experiences- (as they perceive them) for ou
vstudents, the experlentlal base from which they abstract their sense of .wha
mathematlcs is all about; Hence, getting our epistemology straight, or at leas
into the open for discussion, is a vitally important enterprise.

PART I: EPISTEMOLOGICAL ISSUES
The past few years have seen attempts on the part of philosophers and mathema
ticians to reconceptualize and redescribe the mathematical enterprise. The recon

ceptualization has its roots in the work of Pélya (1954), Lakatos (1977, 1978)
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Benacerral and Putnam (see, e.g., Benacerraf & Putnam, 1964), and more
recently in the writings of Kitcher (1984). A main theme in that work is that the
doing of mathematics is a (somewhat) empirical endeavor (see, e.g., Lakatos,
1978, pp. 30-34, “Mathematics is Quasi-empirical”). More pragmatically,
mathematical authors such as Steen (1988) and Hoffman (1989) have tried to
frame a popular notion of mathematics that accurately reflects the nature of
contemporary mathematics and that also serves as a basis for a modern pedagogy
of mathematics. The ideas expressed here are grounded in some philosophical
reflections (discussed later), but they start off in a practical vein. Hoffman’s ideas
on the nature of mathematics and the need for reform in mathematics education
are used as a starting point for discussion. The following are some of the main
points made by Hoffman (1989):

Al The current system of mathematics education:

; * misrepresents mathematics, presenting it as a dead and deadly disci-

“+  pline;

% e is based on a false mastery model, in which isolated skills are taught in

i the hope they can then be used to solve prepackaged problems;

« dumps by the wayside, after 8th grade, roughly 50% of the kids each
year—with much higher percentages for most minorities;

* is self-reproductive, in that the successes of the system are the ones’
who perpetuate it, and they have no models but the ones they’ve gone
through;

=} is hence in need of comprehensive overhaul.

B. We need a powerful shorthand description of what mathematics is to

convey the flavor of the discipline and to guide our teaching of it.

» Mathematics is the science of patterns.

I agree with all of A, noting that there is widespread recognition of the
problem and significant progress in working on it (see, e.g., Cahfomla Depart-
ment of Education, 1992; National Council of Teachers ;of Mathematlcs, 1989,
11991; National Research Council, 1989, 1990). Let me now turn to B.

1 agree with Hoffman’s arguments, as far as he takes them (see below for i

detail). Rather than as a descriptive end, however, I see the delineation of |
mathematics as “the science of patterns” as a point of departure. Describing -
mathematics that way raises some interesting issues and takes us into territory
that Hoffman and others who have used the term (e.g., Steen, 1988) may not
have antlclpated Id like to venture into that territory.

Just What is Mathematics Anyway?

When mathematicians talk about mathematics, they usually mean the products of
mathematics. .

i
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Hoffman (1989) begins with two questions, one metaphysical (What is mathe-
matics?) and one epistemological (What does it mean to “know” mathematics?):
The second. question is a misdirection, albeit a subtle one. The question we:
should be asking instead is, “What does it mean to do mathematics, or to act
inathematically?! The answer to this question comes from a liberal (well, per-
haps radical) interpretation of Hoffman and Steen’s answer to the first question,
that mathematics is the science of patterns.

Steen’s (1988) article on the mathematical enterprise is essential reading for

‘everyone in the mathematics and mathematics education communities,

including—perhaps most importantly—students. It describes the scope and
depth of modern mathematics and its power in an increasingly mathematical
world. Here are a few samples:

¢ Number Theory. “Fifty years ago G. H. Hardy could boast of number
theory as the most pure and least useful part of mathematics; today number
theory is studied as an essential prerequisite to many applications of coding,
including data transmission from remote satellites” (p. 611).

e Applications. “The 1979 Novel prize in medicine was awarded to Allan
Cormack for his application of the Radon transform, a well-known tech-
nique from classical analysis, to the development of tomography and
computer assisted tomography (CAT) scanners. . . . Structural biologists
have become genetic engineers, capturing the geometry of complex macro-
molecules in supercomputers and then simulating interaction with other
molecules” (p. 614). Stochastic differential equations are now used to mod-
el chemical processes, stock market behavior, and population genetics.

« Core mathematics. The past 15 years have brought the solutions to some
major unsolved problems, for example, the four-color problem and the
Bieberbach and Mordell conjectures, and opened up new areas, such as
prime factorization both of integers and polynomials.

Steen’s main point is that old conceptions of mathematics were never quite
accurate, and that they now fall short of the mark. Mathematics, classically
defined as “the science of number and space” (Steen, 1988, p. 611) now includes
the study of regularities of all sorts—not only in patterns of twin primes, but in
the patterns emerging from CAT scans as well. Hence, he proposes, with Hoff-
man, that mathematics is the science of patterns.

I am about to stretch the implications of this description. To set up the coming
contrast, let me delineate what I think will be the standard interpretation of the
phrase—a view that may be narrower than Steen’s and Hoffman’s. From the
typical mathematician’s point of view, marhematics is the “stuff” characterized

" above (number theory, applications, core math, etc.); learning mathematics is

finding out about that stuff (often by being told, but sometimes by being pre-
sented with the opportunity to develop it on one’s own); and doing mathematics
is reaching the stage at which one is producing more of that stuff by oneself or in
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collaboration with others. Starting from *“a science of patterns,” a quite different
view can be pursued. :

5

‘A Brief Rhapsody on the Science of Patterns

The patterns part of the phrase requires no elaboration. Mathematics consists of
observing and codifying—in general via abstract symbolic representations—
regularities in the worlds of symbols and objects. (Work in these two spheres
comprises pure and applied mathematics respectively.)

The science part is more interesting.;To begin, a general (and positive) entail-
iment of the term is that science is about makmg sense of things—finding.out
what makes them tick. From - ‘my point of view (see; e.g., Schoenfeld, 1987,
1990), that’s precisely what mathematics is all about—a particular kind of sense-

i making, in which one’s main tool kit consists of a set of symbolic tools, and there
are.well-established styles.of reasoning for seeing how things fit together, Fur-
thermore, “doing science” is generally recognized to be a social rather than a
mere individual and solitary act. There is a scientific community that shares and
builds ideas. So there is of necessity a premium on being able to communicate
scientific results as well as on getting answers. It’s that way in the mathematical
community as well. To remind us that these are not the general perceptions
regarding mathematics, let me briefly recall one shopworn example and intro-
duce a fresher one. Consider these two problems:

1. An army bus holds 36 soldiers. If 1,128 soldiers are being bussed to their
training site, how many buses are needed?

2. Imagine you are talking to a student in your class on the telephone and
want the student to draw some figures. [They might be part of a homework
assignment, for example.] The other student cannot see the figures. Write
a set of directions so that the other student can draw the figures exactly as
shown below.

o

|
.| A

Problem | comes from the Third National Assessment of Educational Pro-
gress (Carpenter, Lindquist, Matthews, & Silver, 1983). Seventy percent of the
students who took the exam did the relevant computation correctly—and 29% of
the students (41% of those who did the right calculation) went on to say that the
number of buses needed is “31 remainder 12.” Problem 2 comes from the 1987—
88 California Assessment Program’s statewide assessment of 12th graders’ math-
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ematical skills (California Department of Education, 1989). Only (5% of the
high school seniors who worked the problem were able to describe the figures
with any degree of clarity.

These are negative examples, which show in striking ways just how mathe-
matics isn’t learned—and hence point to what’s missing in mathematics instruc-
tion. In the first case, you can’t write down “31 remainder 12” if you are thinking
about real buses. It’s clear that for the students who wrote that answer, the
problem wasn’t about real objects at all. Many if not most students see mathe-
matics word problems simply as cover stories that give rise to computations.
Their learned behavior is that one does the computations and writes the answers
down, period—never mind if the answer doesn’t make sense outside that con-
text. That’s about as far from mathematics as sense-making as you can get. In the
second case, the reason so few of the students could communicate about mathe-
matics is very simple; They’d had little or no practice at doing so. When mathc-

Jmatics is taught as received knowledge rather than as something that (a) should
. fit together meaningfully, and (b) should be shared, students nexther try to use 1[
::for sense-making nor develop a means of communicating with it!

These two examples represent just the tip of the iceberg, of course. Elsewhere
(Schoenfeld, 1992, p. 359) I have written about student beliefs such as the following:

¢ Mathematics problems have one and only one right answer.

* There is only one correct way to solve any mathematics problem—usually
" the rule the teacher has most recently demonstrated to the class.

* Ordinary students cannot expect to understand mathematics; they expect
simply to memorize it and apply what they have learned mechanically and
without understanding.

* Mathematics is a solitary activity, done by individuals in isolation.

¢ Students who have understood the mathematics they have studied will be
able to solve any assigned problem in 5 minutes or less.

* The mathematics learned in school has little or nothing to do with the real
world (cf. the bussing problem).

i Formal proof is irrelevant to the processes of discovery or invention.

The roots of such beliefs reside, alas, in the students’ classroom experience. "

But enough negatmty, let me return to the theme of mathematics as the science
of patterns.

Note that hands on and empirical (meaning “grounded in the results of data-
gathenng ) are terms that at least sound natural with regard to science. Here is
the official word, from Webster’s New Universal Unabridged Dictionary (1979):
“Science . . . systematized knowledge derived from observation, study, and ex-
perlmentatlon carried on in order to determine the nature or principles of what is
bejng studied.”

LN
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In fact, that’s precisely what I think mathematics is all about. The result of
mathematical thinking may be a pristine gem, presented in elegant clarity as a
polished product (e.g., as a published paper). Yet the path that Jeads to that
product is most often anything but pristine, anything but a straightforward chain
of logic from premises to conclusions.

Here is a generic description of the genesis of a mathematical result (e.g., a
theorem) that takes a mathematician, say M, a few months to derive. Somewhere
near the beginning of the process, M has the intuition that the result ought to be
true, and thinks she knows why. So, she begins to sketch out a proof. Part of the
argument goes fine, but then there is a place at which things bog down; she can’t
get an intermediate result that seems necessary. M tries three or four different

“zways of getting around the difficulty, without success. So, she begins to think the

result might not be true. If not, there ought to be a counterexample—at the point
inrwhich she has run into trouble, of course. She tries to construct one, but it does

not work. NGr does a second, a third, and so on, and then M sees that all the
~ counterexamples fail for the same reason. That reason is the idea that has been
missing from the proof, and M now gets past the roadblock. Of course, she:
encounters others as she continues working on the theorem. M is fortunate this '
. time: The empirical data (attempts at counterexamples etc.) work in her favor,
- and they result in her finding the ideas that allow for her proof. Other times she is
"Jess fortunate: Promising potential theorems turn out not to be true, and that’s the

end of the story.

In sort, mathematics is a “hands-on,” data-based enterprise for those who
engage in it. Doing mathematics is doing science, as defined above. 1t has a
significant empirical component, one of data and discovery. What makes it
mathematics rather than chemistry or physics or biology is the unique character
of the objects being studied and the tools of the trade.

Another characteristic of the scientific enterprise is that it is, in large measure,
a social enterprise. Many of the problems considered central are too big for
people to solve in isolation. In consequence an increasingly large percentage of
mathematical and scientific work is collaborative. Such collaborative work both
requires and fosters shared perspectives among collaborators in particular and
across the field at large. \When ‘'we.say someone is a, member of the:! sc1entific
community, that phrase has 31gn1f1cant entailments It ‘means; that ‘the person has
the. appropriate knowledge base; of course. But it also means that 4. person has

‘picked up not ‘only the tools but the perspectives of hlS or her diSCiphne——a,g
"-particular way of seeing the world, a'style of thinking about it. (T e stereotypes ‘
about doctors and lawyers, for example, do have a bagis in reality, members of;
ihose groups tend to'have particular ways.of seemg the world. So do mathemati-‘;
‘cians ‘who 'develop their ‘world views in the same way as do the others-—by °

lnteractmg ‘with: those who are already members of the commumty)
I'hope you are with me so far, because I am about to up the ante.<The issue is
tﬁhe character of 1 athematlcal knowzng whether mathemat1c1ans can always be
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‘absolutely confident of the truth of certain complex mathematical results, or
‘whether, in some cases, what is accepted as mathematical truth is in fact the best

collective judgment of the community of mathematicians, which may turn out to

be in error. I will argue the latter and will argue that taking this perspective has

implications for classroom practice.

The notion of “fallible truths” and the role of the scientific community in
defining those truths is more familiar in the case of the physical sciences. Popper
(1959) and Kuhn (1962) highlighted the idea, and it has received a fair amount of
recent discussion. ;The notion that absolute truth is unattainable in science is at

deast implicit in the language of science, in the use of the term theory for
-“tentative explanatiori : Again, thanks to Webster, a theory is “a formulation of
‘apparent relat1onsh1ps or underlying principles of certain observed phenomena

which has been verified to some degree.” Basic science consists in large part of
theory development and refinement, the construction of explanatory frameworks
that account for data as well as possible. In that confext, laws have a funny
meaning. Scientists understand that the laws of science are not statements of
absolute truth but merely theories that appear to have exceptionally solid ground-
ing. New data, or different and more encompassing explanations, can result in
the old laws losing credence and new versions taking their place (e.g., relativity!
supplants Newtonian mechanics which supplanted the Aristotelian view).
start with def1n1tlons or ax1oms and all the rest follows 1nexorably Howevei as
Lakatos (1977) shows in Proofs and Refutatwns that isn’t the way things really
happen. The “natural” definition of polyhedron was accepted by the mathemati-
cal community for quite some time and was used to prove Euler’s formula—until
mathematicians found solids that met the definition but failed to satisfy the
formula. How did the community deal with the issue? Ultimately, by changing
the definition. That is, the grounds for the theory—the definitions underlying the
system—were changed in response to the data. That sure looks like theory
change to me: New formulations replace old ones, with base assumptions (defini-
tions and axioms) evolving as the data come in. (In his 1978 work, Mathematics,
Science, and Epistemology, Lakatos uses the term quasi-empirical to describe
mathematics; he notes that mathematical theories cannot be true; they are at best
“well-corroborated, but always conjectural” [p. 28].) What do we have then,
regarding the nature of truth in mathematics (as in science)? To state things in the
most provocative form: With regard to some very complex issues, truth in mathe-
matics is that for which the vast majority of the community believes it has
compelling arguments. And such truth may be fallible.

Serious mistakes are relatively rare, of course. For topics such as simple
arithmetic or elementary real analysis, to pick two, there’s no room for doubt.
Once you make the definitions, the results follow—and the chain of logic that
leads to the conclusions is sufficiently accessible so that anyone trained in the
mathematics (i.e., who knows the rules of the game and plays by them) can
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iconfirm them. But, for complex results (e.g., a false proof of the Jordan Curve
Theorem was widely known and accepted for a decade, and there was great’

controversy over the proofs of the four-color theorem and the Bieberbach conjec-
ture), there is a social dimension to what is accepted as mathematjcal “truth.”
Once one accepts this notion, discussions of some traditional epistemologi-
cal/ontological questions—questions of what it means to know mathematics and
of mathematical authority (where does mathematical certainty reside?)—take on
an interesting character. These are pursued in Part II.

Here is a distillation of my story so far: Mathematics is an inherently social

.study, and experimentation, to determine the nature or principles of regularities
in systems defined axiomatically or theoretically (“pure math”) or models of
* systems abstracted from real-world objects (“applied math”). The tools of mathe-
" matics are abstraction, symbollc representation, and symbolic: manipulation.
However, being trained in the use ‘of these tools no more means that one thinks
> mathematically than knowing how to use shop tools makes one a craftsperson.
' Learning to think mathematically means (a) developing a mathematical point of
view—valuing the processes of mathematization and abstraction and having the
predilection to apply them, and (b) developing competence with the tools of the
trade and using those tools in the service of the goal of understanding structure—
mathematical sense-making. Finally, some mathematical truths (results accepted
as true by the community) are in fact “provisional truths,” reflecting the field’s
best but possibly incorrect understanding.

The Bottom Line

Why raise all this fuss about the nature of mathematics? Because; people develop

their understanding of the nature of the mathematical enterprise from theirexpe-.

rxence with mathematics, and that experience (at least the part- that is typlcally
labeled as.being ‘‘mathematics™) takes place predominantly in.our rnathematlcs
classrooms i The nature of that experience at present was described by Hoffman
and summatized at the beginning of this chapter; the consequences of that experi-
ence are illustrated by the list of student beliefs summarized earlier in this
section. When mathematics is taught as dry, disembodied, knowledge to be
received, it is learned (and forgotten or not used) in that way. However, there is
an optimistic counterpoint to the observation that one’s experience with mathe-
matics determines one’s view of the discipline, and it has its own imperative: The

{actwmes in our mathematics classrooms can and must reflect and foster the:

\understandmgs that we. want students to develop with and about mathematxcs '

That is, if we believe that doing mathematics is an act of sense- makmg, if we
believe that mathematics is often a hands-on, empirical activity; if we believe
that mathematical communication is important; if we believe that the mathemati-

activity, in which a community of trained practitioners (mathematical scientists) ;
* engages in the science of patterns—systematic attempts, based on observation, *
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cal community grapples with serious mathematical problems collaboratively,
making tentative explanations of these phenomena, and then cycling back
through those explanations (including definitions and postulates); if we believe
that learning mathematics is empowering and that there is a mathematical way of
thinking that has value and power, then our classroom practices must reflect
these beliefs. Hence, we must work to construct learning environments in which
students actively engage in the science of mathematical sense-making, as charac-
terized earlier. Part I describes aspects of my attempts in that direction.

PART ll PEDAGOG]CAL ISSUES

Elsewhere (sec e. g Schocnfeld 1985) I have characterized the mathematical
content of my problem-solving courses. Here, in an extension of the themes
explored in a number of recent (and one not-so-recent) papers (Balacheff,
1987; Collins, Brown, & Newman, 1989; Fawcett, 1938; Lampert, 1990; Lave,
Smith, & Butler, 1988; Lave & Wenger, 1989; Schoenfeld, 1987, 1989b, 1992) 1
focus on the epistemological and social content and means. The content of my
problem-solving courses is epistemological in that the courses reflect my epis-
temological goals: By virtue of participation in them, my students will develop a
particular sense of the mathematical enterprise. The means are social, for the
approach is grounded in the assumption that people develop their values and
beliefs largely as a result of social interactions. I work to make my problem-A
solvmg courses serve as microcosms of selected aspects of mathematical practice
and culture—so that by participating in that culture, students may come to’
understand the mathematical enterprise in a particular way.

What follows are two illustrations of goals, practices, and results. Those
illustrations might be called protoethnographic. Though they might appear anec-
dotal, I believe they contain the substance from which good ethnographic de-
scriptions could be crafted.

Example 1: Where Does Mathematical
Authority Reside?

As indicated in Part I, mathematical truth or correctness is a delicately grasped
object. One might say that the ultimate authority is the mathematics itself: False
proofs are still false, even if people believe them, for example (and ultimately,
one expects, the flaws in them will be uncovered). Nonetheless, mathematical
authority is, in practice, exercised by human hands and minds. There are, of
course, collective standards for mathematical correctness, for example, the re-
view process, in which experts certify (to the degree they can; cf. the proof of the
four-color theorem) that an argument is correct. Through such processes the
mathematical community implements mathematical authority with consistency
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and (in general) with accuracy. This public process both is based in, and provides
substance for, individuals’ mathematical knowledge and authority. Mathemati-
cians, having internalized the standards of correctness in their mathematical
communities, apply those standards to what they know as individuals. In turn,
the application of that abstract mathematical authority results in a very powerful
personal ownership of the mathematics they can certify. To put it another way,
arriving at mathematical certainty is the very personal process of applying an
internalized impersonal standard.! In that sense, ultimate mathematical authority
resides deeply in individuals, and collectively in the mathematical community.

Now, contrast this view of where authority resides with the typical student’s
view. Most co]lége students possess little of the sense of personal knowledge or
internal authority just described. They have little idea, much less confidence, that
they' can serve as arbiters of mathematical correctness, either individually or
collectively. Indeed, for most students, arguments (of purported solutions) are
merely proposed by themseives. Those arguments are then judged by experts,
who determine their correctness. Authority and the means of implementing it are
external to the students. Students propose; experts judge and ceriify.

One explicit goal of my problem-solving courses is to deflect inappropriate
teacher authority. 1 hope to make it plain to the students that the mathematics
speaks through all who have learned to employ it properly, and not just through
the authority figure in front of the classroom.iMore explicitly, a'goal of ‘instruc-

tion is that the class becomes a community of mathematical 'judgmentwhi_ch'; to,
‘the best of its ability, employs appropriate mathematical standards to: judge the"

# claims made before it.

““In the course discussed here, the explicit deflection of teacher authority began
the second day of class when a student volunteered to present a problem solution
at the board. As often happens, the student focused his attention on me rather
than on the class when he wrote his argument on the board; when he finished he
waited for my approval or critique. Rather than provide it, however, I responded
as follows:

A

“Don’t look to me for approval, because I’m not going to provide it. I'm
sure the class knows more than enough to say whether what’s on the board -
is right. So (turning to class) what do you folks think?”

i)

In this particular case the student had made a claim that another student
believed to be false. Rather than adjudicate, I pushed the discussion further: How
could we know which student was correct? The discussion continued for some
time, until we found a point of agreement for the whole class. The discussion
proceeded from there. When the class was done (and satisfied) I summed up.

This problem discussion illustrated a number of important points for the

10ne is likely to get to this point via interactions with others, of course.
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students, points consistently emphasized in the weeks to come. {First, 1 rarely |
certified results, but turned points of controversy back to the class for resolution.
Second, the class was to accept little on faith. That is, “we proved it in Math
127" was not considered adecjuate reason to accept a statement’s validity. In-

‘stead, the statement must be grounded in mathematics solidly understood by this

class. Third, my role in class discussion would often be that of a Doubting /
Thomas. That is, I often asked, “Is that true? How do we know? Can you give
e an example? A counterexample? A proof?,” both when the students’ sugges-
tions were correct and when they were incorrect. (A fourth role was to ensure
that the discussions were respectful—that it is the mathematics at stake in the
conversations, not the students!)

This pattern was repeated consistently and deliberately, with effect. Late in
the second week of class, a student who had just written a problem solution on
the board started to turn to me for approval, and then stopped midstream. She
looked at me with mock resignation and said, “I know, I know.” She then turned
to the class and said, “O.K., do you guys buy it or not?” [After some discussion,
they did.]

The pattern continued through the semester. It was supplemented by overt
reflections on our discussions that focused on what it means to have a compelling
mathematical argument. The general tenor of these discussions followed the line
of argumentation outlined in Mason, Burton, and Stacey’s (1982) Thinking
Mathematically: First, convince yourself; then, convince a friend; finally, con-
vince an enemy. (That is, first make a plausible case and then buttress it against
alt possible counterarguments.) In short, we focused on what it means to truly
understand, justify, and communicate mathematical ideas.

The results of these interactions revealed themselves most clearly in the
following incident. Toward the end of the semester I assigned the following
problem.2

-The Concrete Wheel Problem
You are sitting in a room at ground level, facing a floor-to-ceiling window
which is 20-feet square. A huge solid concrete wheel, 100 miles in diame-
ter, is rolling down the street and is about to pass right in front of the
window, from left to right. The center of the wheel is moving to the right at
100 miles per hour. What does the view look like, from inside the room, as
the wheel passes by? (See Fig. 3.1.)

This problem tends to provoke immediate and widely divergent intuitive
reactions, among them:

1. The room will go (almost) instantaneously dark as the wheel first passes
the window. It will stay dark for a short while and go (almost) instan-
taneously light as the wheel leaves.

2The problem is borrowed from diSessa (and borrowed in tum, I believe, from Papert).
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100 mph

FIG. 3.1. The situation described in
the concrete wheel problem.

20 feet x 20 feet
|

2. Same as (1), but the room stays dark for a relatively long time.

3. The room darkens slowly, as though a large window shade was being
pulled more or less:

a. horizontally from left to right, as follows:
-~ &
b. diagonally from the upper left corner as follows:
ARl 4
c. vertically downward as follows:
-™- .

The room then siays dark for a short/long period of time, after which it
lightens in a way complementary to the way it darkened.

When the problem was posed, students made many of the conjectures listed .

above. As usual, the class broke into groups to work on the problem. One group
became the staunch defenders of one conjecture, while a second group lobbied
for another. The two groups argued somewhat heatedly, with the rest of the class
following the discussion. Finally, one group prevailed, on what struck me as
solid mathematical grounds.3 As is my habit, I did not reveal this but made my
usual comment: “O.K., you seem to have done as much with this as you can.
Shall I try to pull things together?” One of the students replied, “Don’t bother.
We got it.” The class agreed.

While one might dismiss this event as being trivial (the students simply
indicated that they had understood the material, and the class progressed; what’s

3] shall refrain from giving the answer in order not to spoil readers’ possible pleasure in determin-
ing it themselves.
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‘the big deal?), or even see their rejection of my offer to pull things together as

being somewhat abrasive (I had signaled my intentions, and they told me not to,
bother), either view misses the 31gn1fxcance of the event. First, it is important to
note that the classroom was funcuomng as a mathematical community. Various’

“points of view were advanced and defended mathematically. The arguments in

favor of different positions were made on solid mathematical grounds, and ulti-
mately the correct view prevailed, for good reason. One could ask for no better at
a meeting of professional mathematicians. Second, and more importantly, the
locus of mathematical authority had shifted radically. From the student’s point of
view, I was no longer needed as an authority figure to provide external certifica-
tion of results. As in the mathematical community at large, the mathematics
spoke through the students. It did so collectively, in the dialogue that took place
in the community; it did so individually, in that the students demanded the
appropriate mathematical standard of argumentation, and then believed the re-
sults. This was their mathematics. They had ownership of it, not only in the
motivational sense, but in the deep epistemological sense that characterizes the
true mathematical knowing and understanding possessed by mathematicians.

Example 2: Who Can Do Mathematics?

Speaking broadly, research mathematics is one thing, and classroom mathemat-
ics is something else altogether. When they are doing mathematics as re-
searchers, mathematicians are pushing the boundaries of knowledge—not only
their own, but that of the mathematical community. Publishable research con-
sists, in essence, of results that (a) are new to the community of mathematicians,
and (b) deemed of sufficient merit or interest to warrant distribution. In contrast,
classroom mathematics generally consists of the distillation and presentation of

known results to be “mastered” by students. The implicit but widespread pre-:

sumption in the mathematical community is that an extensive background is;
requnred before one can do mathematics. Undergraduates who publish mathemat-
ics are exceedingly rare, and even graduate students with publications prior to
their thesis work are relatively uncommon. Until students get to the point of
doing research (typically in the third year of graduate school), learning mathe-
matics means ingesting mathematics.

There are, of course, exceptions to this rule. There is, for example, the Moore
method. The Journal of Undergraduate Research has, for half a ccntury, pub—
lished student work in mathematics. Occasionally classroom work produces
results of professional quality. For example, an article by Banchoff and student
associates (1989) appeared in a recent UME Trends, and a discussion in one of
my problem-solving classes not long ago led to a publication in the College
Mathematics Journal (Schoenfeld, 1989a). But the threshold of research qua
research is unreasonably high for most undergraduate courses.

Here I wish to pursue an alternative perspective, one based on the notion of

i
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intellectual community. In the introduction to this chapter I indicated thaf'tI work

to make my problem-solving courses “microcosms of selected aspects of mathe-

Shatical practice and culture,” in that the classroom practices reflect (some of ) the

yalues of the mathematical community at large.

““Part 1 of this chapter presented one mainstream view of mathematics, as the
science of patterns. 1 described this elsewhere by saying that the business (and
pleasure) of mathematics consists of perceiving and delineating structural rela-
tionships. Suppose we add to that the notion, as suggested above, that research—
what most mathematicicns would call doing mathematics—consists of making
contributions to the mathematical community’s knowledge store. And finally,
one adds part of the mathematician’s aesthetic, that making such contributions is
part of the mathematician’s intellectual life, and something of intrinsic value.

My goals for my problem-solving courses are to create local intellectual
communities with those same values and perspectives. The notion of localization
works as follows: A contribution is significant if it helps the particular intellec-
tual community advance its understanding in important ways.

Elsewhere I (Schoenfeld, 1990) described one of my class’s discussions of the
Pythagorean Theorem. Here 1 review that discussion from the perspective of
social and epistemological engineering. The initial problem posed to the class
was very broad, in essence: “What can we do with the Pythagorean Theorem?”

In its discussion of the result (well known to all of the students), the class
began by proving the theorem a variety of different ways. It explored three- and
n-dimensional analogues of the theorem; it pursued geometric extensions and
analogues. Then it began to focus on the diophantine equation

a? + b =L

Could we find all positive integer solutions to this equation?

Now, any mathematician can tell you there is a general solution to this prob-
lem. A triple of integers (a, b, ¢) with the property that a? + b2 = c?iscalled a
Pythagorean triple. Every Pythagorean triple (a, b, ¢) can be shown to be of thelf
form ’

a = k(M2 — N2), b = 2k(MN), ¢ = k(M?> + N?),

. where k is the largest common factor of a, b, and ¢, and M and N are relatively
. prime integers. In a content-oriented course (€.g., elementary number theory),
one would typically present the proof of this result in about 10 minutes, and then
move on to another result. But part of the engineering effort in teaching this
course consists of seeding classroom dialogue with problems at the appropriate
level for community discourse, and then holding back as the community grapples
with those problems to the best of its ability.
In this case, the students began working on the problem by generating some
of the whole-number Pythagorean triples they knew; (3, 4, 5), (5, 12, 13),
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(6. 8, 10), (7, 24, 25), (8, 15, 17), (9, 40, 41), and (10, 24, 26). On the basis of
these empirical data they made the following observations:

1. Integer multiples of Pythagorean triples are Pythagorean and hence of
little intrinsic interest. (If you can generate all the relatively prime Py-
thagorean triples, then you can generate all the rest.)

2. In every relatively prime triple, the hypotenuse was odd.

3. In every relatively prime triple where the smaller leg was odd, the hypote-
nuse exceeded the larger leg by 1.

4. In the relatively prime triple where the smaller leg was even, the hypote-
nuse exceeded the larger leg by 2.

As a result of observation (1), the class restricted its attention to relatively
prime Pythagorean triples. They conjectured that observation (2) was always
true, and proved it. On the basis of observation (3), they conjectured that there
are infinitely many Pythagorean triples of the form (2x + 1, 2y, 2y + 1), and
proved it. On the basis of observation (4), they conjectured that there are infi-
nitely many Pythagorean triples of the form (2x, 2y — 1, 2y + 1), and proved it.
On the basis of those two results, and the fact that they knew of no other triples,
the class conjectured that all relatively prime triples are of the types.described in
(3) and (4). They ‘began their work on this conjecture by proving it for the first
relevant case: They proved there are no relatively prime Pythagorean triples of
the form (x, y, y + 3). At that point a student asked: If they were successful in
proving their conjecture, did they have a publishable theorem?

The answer, of course, was no. As noted above, the complete solution to the
problem they were working on is a standard result presented in elementary
number theory courses. Nonetheless, neither the student’s question nor the
class’s achievements should be discounted. The individual student’s comment
indicated that he, at least, thought that the class might be at the frontiers of
knowledge—a far cry from what happens in most classrooms.

And, in two significant ways, the students were. First, three of the results they
proved:

There are infinitely many triples of the form (2x + I, 2y, 2y + 1);
There are infinitely many triples of the form (2x, 2y — 1, 2y + 1); and
There are no relatively prime triples of the form (x, y, y + 3),

were new to me and (although easily proven) are a surprise to many mathemati-
cians. Hence, the product of their labors was not inconsequential. But more
importantly, these students, in their own intellectual community, were doing
mathematics. They were, at a level commensurate with their knowledge and
abilities, truly engaged in the science of patterns.



FINAL COMMENTARY

In Part I of this chapter I tried to portray mathematics as a living, breathing
discipline in which truth (as much as we can know it) lives in part through the
individual and collective judgments of members of the mathematical community.
[ suggested that

1. Mathematicians develop much of that deep mathematical understanding
by virtue of apprenticeship into that community—typically in graduate
school and as young professionals.

2. In standard instruction students are typically deprived of such apprentice-
ships, and hence of access to doing and knowing mathematics.

In Part 1I of this chapter I tried to convey some of the character of my
problem-solving courses. In essence, I create artificial communities in them-—
communities in which certain mathematical values, consistent with some of
those of the mathematical community at large, predominate. The following is a
more precise delineation of some of the main themes of those courses:

Mathematics is the science of patterns, and relevant mathematical activi-
--rties—lookmg to perceive structure seeing connections, capturmg patterns
symbollcally, conjecturmg and provmg, and abstractmg and generallzmg—
all-are valuéd.” ) -

2. Mathematical authority resides in the mathematics, which—once we learn
how to heed it—can speak through each of us and give us personal access
to mathematical truth. In that way mathematics is a fundamentally human
(and for some, aesthetic and pleasurable) activity.

I hope to have illustrated, in examples 1 and 2, how students, by living in such
artificial microcosms of mathematical practice, come to develop as mathematical
doers and thinkers. 1 conclude this chapter with the comment that in a very
serious sense, these artificial environments provide students with a genuine
experience of real mathematics. By that standard, conventional mathematics
instruction is wholly artificial.
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